Quantum Advantages for Approximate Combinatorial Optimization

Niklas Pirnay, Vincent Ulitzsch, Frederik Wilde, Jens Eisert, Jean-Pierre Seifert 2023-12-01
arXiv:2212.08678
frederikwil.de/hqcc2023

Combinatorial Optimization

Operations Research Letters Volume 37，Issue 1，January 2009，Pages 11－15
－Combinatorial optimization is hard
－Incredibly successful heuristics（for approximation）
－Can quantum computers help？
Certification of an optimal TSP tour through 85，900 cities
 Daniel G．Espinoza ${ }^{\text {e }}$ 『，Marcos Goycoolea ${ }^{\dagger}$ 『，Keld Helsgaun ${ }^{9}$ 『

APPROXIMATION HARDNESS

－MAX－CUT is APX－hard
－Unless P＝NP，there exists no poly－time algorithm that computes a solution with more than $N=\frac{16}{17} N_{\text {opt }}$ cuts for any MAX－CUT instance［Håstad］

FORMULA COLORING

－Generalization of graph coloring
－$\left(z_{1} \neq z_{2}\right) \wedge\left(\left(z_{1}=z_{3}\right) \rightarrow\left(z_{2}=z_{4}\right)\right)$
－NP－complete
－Even hard to approximate！［Kearns］

INTEGER LINEAR PROGRAM（ILP）

$$
\min _{x \in \mathbb{T}^{n}} \mathbf{c} \cdot \mathbf{x}
$$

subject to linear constraints

A Provable Approximation Advantage

"A fault tolerant quantum computer can approximate certain combinatorial optimization problems super-polynomially more efficiently than a classical computer." [Pirnay]

Computational Problems and Models

Private key must be hard coded!

Deterministic Finite Automaton (DFA)

POLYNOMIAL REDUCTION

A bit of learning theory

CONCEPT CLASS

CONSISTENCY PROBLEM

Con(C, H)

Instance: A set of labeled examples
$S=\{(x, c(x)) \mid x \in X\}$
Solution: Minimal-size $h \in H$ which is consistent with S
define: opt $_{\text {Con }}(S):=|h|$

OCCAM'S RAZOR

compression

parameter

For a sample set S of size $|S|=\tilde{\mathcal{O}}\left(\frac{1}{\epsilon}+\left[\frac{n^{\alpha}}{\epsilon}\right]^{\frac{1}{1-\beta}}\right)$
"approximation gap"
 any $h \in H$ consistent with S which also satisfies $|h| \leq \operatorname{opt}_{\text {Con }}(S)^{\alpha}|S|^{\beta}$ achieves $\operatorname{error}(h):=\mathbb{P}_{x}[h(x) \neq c(x)] \leq \epsilon$ with high probability. Where $\alpha \geq 1$ and $0 \leq \beta<1$
[Blumer]

A Provable Approximation Advantage

STRATEGY

- Classical hardness of inverting RSA
- Hardness of approximation for Con(C-RSA, H) yia Occam's razor
- Approximation preserving reduction to
Con(DFA-RSA, DFA) and then FC-RSA [Kearns]
- approximation-preserving reduction to ILP-RSA [Pirnay]
- Efficient quantum algorithm for approximating ILP-RSA [Pirnay]

With sample size
$|S|=\operatorname{poly}\left(n, \epsilon^{-1}\right)$ any $h \in H$
that is consistent with S, s.t.
$|h| \leq \operatorname{opt}_{\mathrm{Con}}(S)^{\alpha}|S|^{\beta}$
achieves error $\leq \epsilon$.

- Learning C-RSA by H can be seen as an approximation task: Approximate opt ${ }_{\text {Con }}(S)$
- Approximately learning a C-RSA circuit enables one to break RSA ! [Alexi]
- $|h| \mapsto$ (partitions)
- $S \mapsto$ FC-graph


```
min c
```

$x \in \mathbb{Z}^{n}$
subject to
constraints

A Provable Approximation Advantage

Figure 5 in [Pirnay]

ILP-RSA

By our construction, we get the integer linear programming problem ILP $_{F}$

$\operatorname{minimize} \sum_{1 \leq i \leq M} w_{i}^{(\text {color } l \text { is being used) }}$

> indicator variable
subject to the following constraints,

$$
\begin{array}{lr}
\text { for all } u, i \in\{1, \ldots, M\}, & \left(x_{u, i}=1\right) \Longleftrightarrow\left(\hat{z}_{u}=i\right), \\
\text { for all } u \in\{1, \ldots, M\}, & \text { only one color per variable: } \sum_{i=1}^{M} x_{u, i}=1, \\
\text { for all } u, i \in\{1, \ldots, M\}, & \text { count colors: } x_{u, i} \leq w_{i}, \\
\text { for all } Q \text { clauses }\left(z_{u} \neq z_{v}\right) \text { and all } i \in\{1, \ldots, M\}, & x_{u, i}+x_{v, i} \leq 1, \\
\text { for all } R \text { clauses }\left(\left(z_{u} \neq z_{v}\right) \vee\left(z_{k}=z_{l}\right)\right) \text { with } j \in\{1, \ldots, R\}, & \left(a_{j}=1\right) \Longleftrightarrow\left(\hat{z}_{k}=\hat{z}_{l}\right),
\end{array} \quad \begin{aligned}
&\left(b_{j}=1\right) \Longleftrightarrow\left(\hat{z}_{u} \neq \hat{z}_{v}\right), \\
& s_{j}=\left(a_{j} \vee b_{j}\right), \\
& s_{j} \geq 1,
\end{aligned}
$$

and $w_{i}, x_{u, i}, a_{j}, b_{j}, s_{j} \in\{0,1\}$ and $1 \leq \hat{z}_{u}, \hat{z}_{v}, \hat{z}_{k}, \hat{z}_{l} \leq M$.

Classical Hardness of Approximation

Theorem V. 12 (Classical hardness of approximation for integer linear programming). Assuming the hardness of inverting the RSA function, there exists no classical probabilistic polynomial-time algorithm that on input an instance ILP $_{F}$ of ILP-RSA finds an assignment of the variables in ILP_{F} which satisfies all constraints and approximates the size opt $\mathrm{ILP}^{\left(\mathrm{ILP}_{F}\right)}$) of the optimal solution by

$$
\begin{equation*}
\sum_{1 \leq i \leq M} w_{i} \leq \text { opt }_{\mathrm{ILP}}\left(\operatorname{ILP}_{F}\right)^{\alpha}\left|\operatorname{ILP}_{F}\right|^{\beta} \tag{46}
\end{equation*}
$$

for any $\alpha \geq 1$ and $0 \leq \beta<1 / 4$.

An Efficient Quantum Algorithm

Algorithm 1: Approximate the solution of Con(C-RSA, BC)

```
Input : A labeled sample S of C-RSA
Output : The description of a Boolean circuit consistent with S
Pick any example s\inS and read e,N from it;
Run Shor's algorithm [1] to factor N and retrieve p and q;
Run the extended Euclidean algorithm to compute d, such that d\timese=1 mod (p-1)(q-1);
// Note that at this point, d is the secret RSA exponent.
Output the description of a Boolean circuit that, on input binary (powers 
    together for which the bit d}\mp@subsup{d}{i}{}=1\mathrm{ (thereby hard-wiring d into the circuit), using the iterated products technique [33] and outputs the
    LSB of the result.
```

Move along the chain of reductions...

Theorem V. 16 (Quantum efficiency for ILP-RSA). There exists a polynomial-time quantum algorithm that, on input an instance $\operatorname{ILP}_{F_{S}}$ of ILP-RSA, finds a variable assignment A that satisfies all constraints and for which the objective function is bounded as

$$
\sum_{1 \leq i \leq M} w_{i} \leq o p t_{\mathrm{ILP}}\left(\operatorname{ILP}_{F_{S}}\right)^{\alpha}
$$

for all $\operatorname{ILP}_{F_{S}}$ and for some $\alpha \geq 1$.

Conclusion

- Constructive quantum advantage for approximate optimization
- Opens up new problems to study with actual quantum optimization algorithms (QAOA)
- Alternative proofs via the PCP theorem possible [Szegedy]
- Opens up the path towards more practical advantagebearing instances

Slides at: frederikwil.de/hqcc2023

